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Sparse implementation of the SFA-LMM

This section extends the sparse implementation of the
average information (AI) algorithm for the partially
separable factor analytic linear mixed model
(SFA-LMM). Thompson et al. (2003) introduced the
sparse implementation for factor analytic linear mixed
models as a more efficient approach to estimate the key
variance parameters, that is the loadings, score vari-
ances and specific variances. This approach also pro-
vides a natural way to handle cases where some specific
variances are zero. When all specific variances are zero,
this leads to a (fully) reduced rank factor analytic linear
mixed model (Kirkpatrick and Meyer, 2004).

Preliminaries

The SFA-LMM for y, the ns-vector of phenotypic data
on v genotypes, p environments and s traits, is:

y = Xτ + ZΛtefte + (Is ⊗ Z)δte + ε, (1)

where ZΛte = Λt ⊗Z[Λe ⊗ Iv] is the n× vktke separa-
ble factor analytic design matrix, and ε = (Is⊗Z)un+

(Is ⊗ Zp)up + e, with var(ε) = Rε. The SFA-LMM in
Equation 1 can be extended by reordering and parti-
tioning the regression residuals as δte = (δ⊤

te1
, δ⊤

te2
)
⊤,

where δte1 is a vp1s1-vector with no zero elements and
δte2

is a v(p1s2 + p2s)-vector with all zero elements,
such that p = p1 + p2 and s = s1 + s2, with p1 ≥ 1

due to the constraints required during estimation (see
Section X of the manuscript). Two simpler models can
also be obtained:
1. When p1 = p and s1 = s, no specific variances are

zero. This model is the conventional SFA-LMM.
2. When s1 = 0, all specific variances are effectively

zero. This model is referred to as the reduced rank
SFA-LMM.

The model considered below allows some specific vari-
ances to be non-zero and some to be zero. The SFA-
LMM can therefore be written as:

y = Xτ + ZΛtefte + Z1δte1
+ Z2δte2

+ ε, (2)

where [Z1 Z2] is partitioned conformably with δte.
It is assumed that δte2 = 0, and that:[

fte
δte1

]
∼ N

([
0

0

]
,

[
Dt ⊗De 0

0 Ψt1 ⊗Ψe1

]
⊗Gg

)
.

In this model, the genotype scores and regression resid-
uals are assumed to be independent. Thompson et al.
(2003) also present an equivalent formulation where the
random effects are assumed to be dependent. This for-
mulation will be extended for the SFA-LMM in a sub-
sequent paper.

The mixed model equations for the SFA-LMM in
Equation 2 are given by: X⊤R−1

ε X X⊤R−1
ε ZΛte X⊤R−1

ε Z1

ZΛte

⊤ R−1
ε X ZΛte

⊤ R−1
ε ZΛte +D−1

t ⊗D−1
e ⊗G−1

g ZΛte

⊤ R−1
ε Z1

Z1
⊤R−1

ε X Z1
⊤R−1

ε ZΛte Z1
⊤R−1

ε Z1 +Ψ−1
t1

⊗Ψ−1
e1

⊗G−1
g

 τ̂

f̃ te
δ̃te1

 =

 X⊤R−1
ε y

ZΛte

⊤ R−1
ε y

Z1
⊤R−1

ε y

. (3)

Prediction of genotype scores and regression residuals

Following Smith et al. (2019), Equations 2 and 3 can
be written as:

y = Wβ + ε and Cβ̃ = W⊤R−1
ε y, (4)

where W = [X ZΛte Z1] and C = W⊤R−1
ε W + G−1

c ,
with:

β̃ =

 τ̂

f̃ te
δ̃te1

 and G−1
c =

0 0 0

0 D−1
t ⊗D−1

e ⊗G−1
g 0

0 0 Ψ−1
t1

⊗Ψ−1
e1

⊗G−1
g

.
The BLUPs of the key random effects are obtained via
absorption of C onto y⊤R−1

ε y, which gives:

f̃ te =
[
Dt ⊗De ⊗Gg

]
ZΛte

⊤ Py and δ̃te1
=

[
Ψt1 ⊗Ψe1

⊗Gg

]
Z1

⊤Py,

where P = R−1
ε − R−1

ε WC−1W⊤R−1
ε is the ns × ns

residual sum of squares matrix. Absorption of C also
produces the prediction error variance matrices, with:

var(f̃ te − f te) = Cf̃te f̃te and var(δ̃te1
− δte1

) = Cδ̃te1 δ̃te1 ,

where Cf̃te f̃te =
[
Dt ⊗De ⊗Gg

](
Ivktke − ZΛte

⊤PZΛte[
Dt ⊗De ⊗Gg

])
and Cδ̃te1 δ̃te1 =

[
Ψt1 ⊗Ψe1

⊗Gg

](
Ivps −Z1

⊤PZ1

[
Ψt1 ⊗Ψe1

⊗Gg

])
. These matrices are

equivalent to the diagonal blocks in C−1 corresponding
to f̃ te and δ̃te1

, respectively.
Lastly, note that the components in the equations

above assume the variance parameters are known. The
variance parameters are unknown, however, so they must
be estimated. The resulting predictions are therefore re-
ferred to as EBLUPs.

Estimation of loadings and specific variances

The REML estimates of the key variance parameters
are obtained by maximising the residual log-likelihood,
which is given by:

l(y2) = − 1
2

(
log|H|+ log|X⊤H−1X|+ y⊤Py

)
= − 1

2

(
log|H|+ log|X⊤H−1X|+ yr

⊤H−1yr

)
, (5)

where y2 = L⊤
2y such that L⊤

2X = 0 and yr = y−Xτ̂ ,
with var(yr) = H (Verbyla, 1990). In particular, the
REML estimates are obtained by solving a set of (score)
equations, which are given by:

s(κ) =
∂l(y2)

∂κ⊤
= 0, (6)

where κ is the b-vector of variance parameters in the
IFA-LMM. The score equations were originally solved
using numerical approaches based on the observed or
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expected information. The AI algorithm is based on the
average information, and computes updates as:

κ(m+1) = κ(m) +
[
I(m)

a

]−1

s(κ(m)), (7)

where κ(m) is the b-vector of variance parameters, I(m)
a

is the AI matrix and s(κ(m)) is the score equations for
the mth iteration. Note that the superscript “m” is re-
moved in the following for brevity. The score equation
for κi is given by (Gilmour et al., 1995):

s(κi) = − 1
2

[
tr
(
PḢi

)
− y⊤Pqi

]
, (8)

where Ḣi =
∂H
∂κi

and qi is the working variate for the
ith variance parameter, which is given by:

qi = ḢiPy. (9)

Next, let the vectors of key variance parameters in the
SFA-LMM be denoted by:

λa = vect(Λa), da = diag(Da) and ψa1 = diag(Ψa1),

where a = t and e for traits and environments.
The working variates for the key variance parame-

ters are given by:

qi =



[(
ΛtDtΛ̇

⊤
ti + Λ̇tiDtΛ

⊤
t

)
⊗ Z

(
ΛeDeΛ

⊤
e ⊗Gg

)
Z⊤

]
Py κi ∈ λt[

ΛtDtΛ
⊤
t ⊗ Z

(
[ΛeDeΛ̇

⊤
ei

+ Λ̇ei
DeΛ

⊤
e]⊗Gg

)
Z⊤

]
Py κi ∈ λe

ZΛte

[
Ḋti ⊗De ⊗Gg

]
ZΛte

⊤ Py κi ∈ dt

ZΛte

[
Dt ⊗ Ḋei

⊗Gg

]
ZΛte

⊤ Py κi ∈ de

Z1

[
Ψ̇t1i

⊗Ψe1
⊗Gg

]
Z⊤

1Py κi ∈ ψt1

Z1

[
Ψt1 ⊗ Ψ̇e1i

⊗Gg

]
Z⊤

1Py κi ∈ ψe1

where Λ̇ai = ∂Λa

∂λai
, Ḋai = ∂Da

∂dai
and Ψ̇a1i

=
∂Ψa1

∂ψa1i

,
with a = t or e. The working variates for the specific
variances can be simplified since the regression residuals
are independent across trait by environment combina-
tions. It therefore follows that:

qi =

{
Z1·i

[
Ψe1

⊗Gg

]
Z ⊤

1iPi·y κi ∈ ψt1

Z1·i

[
Ψt1 ⊗Gg

]
Z ⊤

1iPi·y κi ∈ ψe1

where Z1i is the n1×vp1 design matrix for the ith trait
with n1 =

∑p1
i=1 ni or Z1i is the nis1×vs1 design matrix

for the ith environment, Pi· are the corresponding n1

or nis1 rows in P and Z1·i are the corresponding vp1
or vs1 columns in Z1.

The trace term in Equation 8 is then given by:

tr(PḢi) =



2 tr
[(
Λ̇⊤

ti ⊗ [Λ⊤
e ⊗ Iv]Z

⊤
)
R−1

ε WC·f̃te
]

κi ∈ λt

2tr
[(
Λ⊤

t ⊗ [Λ̇⊤
ei

⊗ Iv]Z
⊤
)
R−1

ε WC·f̃te
]

κi ∈ λe

tr
[(
ḊtiD

−1
t ⊗De ⊗ Iv

)
ZΛte

⊤ R−1
ε WC·f̃te

]
κi ∈ dt

tr
[(
Dt ⊗ Ḋei

D−1
e ⊗ Iv

)
ZΛte

⊤ R−1
ε WC·f̃te

]
κi ∈ de

tr
[(
Ψ̇t1i

Ψ−1
t1

⊗Ψe1
⊗ Iv

)
Z⊤

1R
−1
ε WC·δ̃te1

]
κi ∈ ψt1

tr
[(
Ψt1 ⊗ Ψ̇eiΨ

−1
e ⊗ Iv

)
Z⊤

1R
−1
ε WC·δ̃te1

]
κi ∈ ψe1

where C·f̃te is the column in the inverse coefficient ma-
trix corresponding to f̃ te and C·δ̃te1 is the column cor-
responding to δ̃te1

.

The trace terms for the specific variances can be
further simplified as:

tr(PḢi) =


1

ψt1i

tr
[(
Ψe1

⊗ Iv
)
Z ⊤

1iR
−1
εi

Wi·C
·δ̃te1i

]
κi ∈ ψt1

1
ψe1i

tr
[(
Ψt1 ⊗ Iv

)
Z ⊤

1iR
−1
εi

Wi·C
·δ̃te1i

]
κi ∈ ψe1

where Rεi
is the ith diagonal block in Rε, Wi· are the

n1 or nis1 rows in W corresponding to the ith trait or
environment and C

·δ̃te1i are the vp1 or vs1 columns in
C corresponding to δ̃te1i

. The trace terms avoid work-
ing with the dense genomic relationship matrix. When
Gg is not prohibitively large, the trace term for the
specific variances can also be computed as:

tr(PḢi) =


v

ψt1i

tr
(
Ψe1

)
− tr

[(
Ψe1 ⊗Gg

)
Cη1i

η1i

]
κi ∈ ψt1

v
ψe1i

tr
(
Ψt1

)
− tr

[
(Ψt1 ⊗Gg

)
Cη1i

η1i

]
κi ∈ ψe1

where Cη1i
η1i is the prediction error variance matrix

of η1i = Z ⊤
1iPi·y.

Lastly, the AI matrix in Equation 7 is given by:

Ia = 1
2Q

⊤PQ, (10)

where Q = [q1 q2 . . . qb] is the ns× b matrix of work-
ing variates across all b variance parameters. The AI
matrix is obtained via absorption of C onto Q⊤R−1

ε Q

(Smith, 1999).
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