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Abstract
Key message   The inclusion of multiple traits and multiple environments within a partially separable factor analytic 
approach for genomic selection provides breeders with an informative framework to utilise genotype by environment 
by trait interaction for efficient selection.
Abstract  This paper develops a single-stage genomic selection (GS) approach which incorporates information on multiple 
traits and multiple environments within a partially separable factor analytic framework. The factor analytic linear mixed 
model is an effective method for analysing multi-environment trial (MET) datasets, but has not been extended to GS for 
multiple traits and multiple environments. The advantage of using all information is that breeders can utilise genotype by 
environment by trait interaction (GETI) to obtain more accurate predictions across correlated traits and environments. The 
partially separable factor analytic linear mixed model (SFA-LMM) developed in this paper is based on a three-way separa-
ble structure, which includes a factor analytic matrix between traits, a factor analytic matrix between environments and a 
genomic relationship matrix between genotypes. A diagonal matrix is then added to enable a different genotype by environ-
ment interaction (GEI) pattern for each trait and a different genotype by trait interaction (GTI) pattern for each environment. 
The results show that the SFA-LMM provides a better fit than separable approaches and a comparable fit to non-separable 
and partially separable approaches. The distinguishing feature of the SFA-LMM is that it will include fewer parameters than 
all other approaches as the number of genotypes, traits and environments increases. Lastly, a selection index is used to dem-
onstrate simultaneous selection for overall performance and stability. This research represents an important continuation in 
the advancement of plant breeding analyses, particularly with the advent of high-throughput datasets involving a very large 
number of genotypes, traits and environments.

Introduction

This paper develops a single-stage genomic selection (GS) 
approach which incorporates information on multiple traits 
and multiple environments within a partially separable factor 
analytic framework. The factor analytic linear mixed model 

of Smith et al. (2001) is an effective method for analysing 
multi-environment trial (MET) datasets, which includes a 
parsimonious model for genotype by environment inter-
action (GEI). The factor analytic model has already been 
applied to multi-trait datasets in order to model genotype 
by trait interaction (GTI), but has not been extended to GS 
for multiple traits and multiple environments (Meyer 2007, 
2009). The GS approach developed in this paper extends 
the factor analytic model to incorporate both sources of 
information.

Plant breeders select genotypes with superior perfor-
mance across a set of production environments for multiple 
traits of commercial importance. Traditionally, threshold 
selection has been used by setting thresholds for each trait 
separately, but this ignores the genetic correlations between 
traits and may exclude genotypes that could serve as poten-
tial parents (e.g. high-yielding genotypes that are too tall 
for release). A more efficient approach is to use a selection 
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index, which does consider the genetic correlations between 
traits and weights their importance based on the breeding 
objectives (Bernardo 2010). Selection indices have become 
a popular approach to advance material through the breed-
ing pipeline for commercial release and to select potential 
parents for future crosses (Batista et al. 2021).

Genomic selection is a form of marker-assisted selection 
that can improve the rate of genetic gain in plant breeding 
programs (Meuwissen et al. 2001). GS has already been used 
in the context of a selection index (Céron-Rojas and Crossa 
2018), however, many of the current applications only use 
information on multiple environments for a single trait or mul-
tiple traits for a single environment, and this may limit the 
potential genetic gain. The advantage of using all information 
is that breeders can utilise genotype by environment by trait 
interaction (GETI), which reflects the differential response of 
genotypes to different trait by environment combinations (see 
Fig. 1). Another advantage is that breeders can obtain more 
accurate predictions across correlated traits and environments, 
regardless of whether phenotypic data are available on all gen-
otype by environment by trait combinations. This is especially 
appealing for traits and environments with low heritability or 
traits which are difficult/expensive to phenotype.  

Genomic selection for multiple traits and multiple environ-
ments was first considered by Montesinos-López et al. (2016). 
They demonstrated a separable model for GETI, which assumes 
complete separability between traits, environments and geno-
types so it can be written as the Kronecker product of three 
variance matrices. Separable models are appealing because they 
have fewer variance parameters than equivalent non-separable 
models and they capture the factorial structure in the data. The 
separable model of Montesinos-López et al. (2016) includes the 
Kronecker product of an unstructured matrix between traits, a 
diagonal matrix between environments and a genomic relation-
ship matrix between genotypes. Montesinos-López et al. (2019) 
extended this model to include an unstructured matrix between 
traits as well as between environments. They used biplots to 

explore GETI, which display the same GEI pattern for each trait 
and the same GTI pattern for each environment. This example 
highlights an important limitation of using separable models for 
multiple traits and multiple environments, that is they provide 
a very restrictive model for GETI.

An alternative approach is to use a non-separable model 
for GETI, which is fitted directly to the  individual trait 
by environment combinations. Non-separable models are 
appealing because they provide a more general framework 
for GETI that enables different GEI and different GTI pat-
terns. Smith et al. (2007) demonstrated a non-separable fac-
tor analytic linear mixed model which is an extension of the 
single-trait approach of Smith et al. (2001). The advantage of 
using factor analytic models is that they provide a parsimoni-
ous alternative to the unstructured model in terms of a small 
number of common factors. The advantage of using non-
separable factor analytic models is that they can be applied 
to datasets with very few trait by environment combinations 
in order to exploit common information shared across either 
source. However, the non-separable factor analytic model 
has more variance parameters than an equivalent separable 
model and it does not provide direct predictions for those 
trait by environment combinations without phenotypic data.

Recently, Smith et al. (2019) demonstrated a partially 
separable model for GETI, which exploits the appealing 
features of the separable and non-separable models. Their 
model includes the Kronecker product of an unstructured 
matrix between traits and a factor analytic matrix between 
environments, with an additional diagonal matrix that cap-
tures variation specific to traits. This model enables dif-
ferent GEI and different GTI patterns while maintaining 
fewer variance parameters than an equivalent non-separable 
model. Smith et al. (2019) also demonstrated the applica-
tion of plant breeding selection tools, where genotypes with 
high overall performance and stability are of high interest 
to breeders (also see Smith and Cullis 2018). There are two 
limitations of this approach: (i) the unstructured matrix 

Fig. 1   The response of hypothetical genotypes G1 and G2 measured 
in environments E1 and E2 for traits T1 and T2. The left panel dem-
onstrates a non-crossover GEI for T1 and b crossover GEI for T2. 

The right panel demonstrates c a mixture of non-crossover and cross-
over GTI for E1 and d no GTI for E2. Collectively, all plots demon-
strate GETI across all trait by environment combinations
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becomes computationally prohibitive for a typical number 
of traits and (ii) only variation specific to traits is considered, 
but not environments.

The aim of this paper is to extend the partially separa-
ble approach of Smith et al. (2019) for GS using a factor 
analytic matrix between traits as well as between environ-
ments, with an additional diagonal matrix that captures vari-
ation specific to traits as well as environments. This new 
approach is hereafter referred to as the partially separable 
factor analytic linear mixed model (SFA-LMM). The utility 
of the SFA-LMM is compared to the non-separable approach 
of Smith et al. (2007), the partially separable approach of 
Smith et al. (2019) and the two separable approaches of Mon-
tesinos-López et al. (2016, 2019) using a multi-trait MET 
dataset from the Australian Rice Breeding Program. Lastly, a 
selection index is used to demonstrate simultaneous selection 

for overall performance and stability, which extends the plant 
breeding selection tools of Smith and Cullis (2018).

Materials and methods

Data description

The Australian Rice Breeding Program evaluates the com-
mercial merit of test genotypes by annually conducting 
multi-environment field trials for multiple traits. Only a 
single late-stage of field evaluation is considered in this 
paper, with phenotypes collected on grain yield (YLD; t/
ha), days to flowering (DTF) and plant height (PHT; cm). 
The multi-trait MET dataset for 2017-18 is summarised in 
Tables 1, 2 and Figs.  2, 3.   

Table 1   Summary of growing environments in the multi-trait MET dataset

Presented for each environment is the number of genotypes (with two or more replicates) and number of plots. Also presented for grain yield, 
days to flowering and plant height is the mean, generalised narrow-sense heritability ( h2 , Oakey et al. 2006) and number of missing values
* Each environment corresponds to a unique year-region-season combination

Region Env* Genotypes YLD (t/ha) DTF (days) PHT (cm)

Total 2rep >2rep Plots Mean h2 NAs Mean h2 NAs Mean h2 NAs

△ Murrumbidgee 17MB
E

72 24 48 240 8.6 0.54 2 98.3 0.57 8 80.5 0.79 1
17MB

M
60 0 60 240 8.5 0.61 5 91.7 0.54 0 80.3 0.53 0

17MB
L

60 0 60 240 6.7 0.19 4 83.7 0.46 5 82.3 0.46 0
18MB

E
84 84 0 252 11.5 0.48 18 110.2 0.72 0 92.3 0.54 0

18MB
M

84 84 0 252 8.8 0.75 5 95.9 0.19 0 84.8 0.50 1
18MB

L
84 84 0 252 10.0 0.35 27 90.2 0.48 4 84.7 0.50 0

× Murray Valley 17MV
E

36 36 0 108 9.6 0.55 0 120.3 0.75 1 75.7 0.90 0
17MV

M
45 45 0 135 10.3 0.44 1 117.9 0.46 0 68.7 0.60 1

17MV
L

45 45 0 135 7.9 0.71 1 106.4 0.82 10 71.0 0.75 1
18MV

E
84 84 0 168 9.6 0.41 10 124.0 0.55 17 75.6 0.40 0

18MV
M

84 84 0 168 10.3 0.35 2 115.4 0.48 5 73.5 0.29 0
18MV

L
84 84 0 168 6.7 0.36 5 104.3 0.40 20 63.7 0.35 1

Overall – 291 – – 2358 9.0 0.45 80 104.9 0.54 70 77.7 0.55 5

Table 2   Summary of agronomic 
traits in the multi-trait MET 
dataset

Presented for grain yield, days to flowering and plant height is the minimum, mean and maximum value for 
each year, region and season
Note: Values presented are prior to scaling phenotypes to unit variance

YLD (t/ha) DTF (days) PHT (cm)

Min Mean Max Min Mean Max Min Mean Max

Year 2017 2.0 8.4 12.5 68.0 99.2 128.0 56.0 77.8 140.0
2018 1.6 9.6 15.6 73.0 104.8 127.0 49.0 80.7 129.0

Region △ Murrumbidgee 2.0 9.0 15.6 68.0 95.1 122.0 62.0 84.2 140.0
× Murray Valley 1.6 9.0 12.5 86.0 114.7 128.0 49.0 71.2 99.0

Season Early 2.0 10.5 15.6 99.0 116.4 128.0 65.0 83.6 129.0
Mid 2.0 9.3 12.5 84.0 104.5 123.0 56.0 78.4 140.0
Late 1.6 8.1 12.8 68.0 93.2 112.0 49.0 77.9 109.0
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Experimental design and phenotypic data

A total of 291 genotypes were evaluated across 12 envi-
ronments in the Murrumbidgee Valley and Murray Valley 
rice growing regions of Australia (Table 1, Fig. 2). Each 
environment comprised a single field trial, and is indexed 
by one of two years (2017 or 2018), one of two regions 
(Murrumbidgee or Murray Valley) and one of three sea-
sons (early, mid or late). Each trial was designed as a 
randomised complete block design or incomplete block 
design (17MBE only) with 2–4 blocks of 36–84 genotypes 
for a total of 108–252 plots. Four check cultivars were 
evaluated in all 12 environments with phenotypes recorded 
on 36 plots each. The remaining 287 test genotypes were 

evaluated in 1–12 environments (mean of 3) with phe-
notypes recorded on 2–36 plots each (mean of 8). The 
number of genotypes in common between environments 
ranged from 5 to 84, with mean of 19 (Fig. 3). The num-
ber of genotypes in common between years (102), regions 
(255) and seasons (27–36) produced good connectivity 
across these factors. All traits were recorded in all environ-
ments for all genotypes grown, except for missing values 
(Table 2). There are considerable phenotypic differences 
between years, regions and seasons for all traits, but espe-
cially between regions for DTF and PHT and between 
seasons for YLD and DTF. The phenotypes for each trait 
were then scaled to unit variance for model fitting, with 

Fig. 2   Map of the Australian rice growing regions in the multi-trait MET dataset, including the location of trials at Leeton in the Murrumbidgee 
Valley and Jerilderie in the Murray Valley

Fig. 3   Connectivity in the 
multi-trait MET dataset in terms 
of the number of genotypes in 
common between pairs of a 
environments, b years, c regions 
and d seasons. The diagonal 
elements in all plots are the 
number of unique genotypes 
and the lower diagonal in a 
is a heatmap with supporting 
colorkey
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model parameters transformed back to their original scale 
after estimation.  

Marker data

Marker data were available for 267 (of the 291) genotypes. 
Markers were coded as −1, 0 or 1 according to a set of 
14,800 single–nucleotide polymorphisms generated using 
DArTseq (Sansaloni et al. 2011). The frequency of het-
erozygous markers was low given the level of selfing accu-
mulated up to the late stage of evaluation. Markers were 
filtered using the pedicure package in R (Butler 2019), 
with minor allele frequency > 3% and missing value fre-
quency < 20%. A total of 3895 markers were retained 
using this criteria. Missing values were imputed using 
the k-nearest neighbour approach of Troyanskaya et al. 
(2001) with k = 10 . The genomic relationship matrix was 
constructed following VanRaden (2008) method 1. The 
diagonal elements ranged from 0.667 to 4.081, with mean 
of 1.512. The off-diagonal elements ranged from − 0.905 
to 2.927, with mean of − 0.006.

Statistical models

Assume the multi-trait MET dataset comprises s = 3 traits, 
p = 12 environments and v = 267 genotypes with r = 3895 
markers and n = 2358 plots in total. Let the ns-vector of scaled 
phenotypic data be given by y = (y⊤

1
,… , y⊤

s
)⊤ , where 

yi = (y⊤

i1
,… , y⊤

ip
)⊤ is the n-vector for the ith trait and yij is the 

nj-vector for the ith trait and jth environment, which is hereafter 
referred to as the hth trait by environment combination. The 
length of y is therefore given by ns =

∑ps

h=1
nh.

The linear mixed model for y can be written as:

where � is a vector of fixed effects with design matrix X ; u 
is a vps-vector of random genotype by environment by trait 
(GET) effects with n × vp design matrix Z , �� is a vector of 
random non-genetic effects with design matrix �� , e is the 
ns-vector of residuals and ⊗ is the Kronecker product opera-
tor. The effects in � include the mean parameter for each 
trait, environment and their interaction. These effects capture 
the factorial structure between traits and environments, and 
also ensure the model is translational invariant. The effects 
in �� accommodate the plot structures of individual environ-
ments for each trait (Bailey 2008). Further effects in � and 
�� relate to the 24 genotypes without marker data (Tolhurst 
et al. 2019) and spatial modelling (Gilmour et al. 1997).

(1)y = X� +
(
Is ⊗ Z

)
u +

(
Is ⊗ ��

)
�� + e,

It is assumed that:

where G is developed below and �� = ⊕
ps

h=1
Gph

 is a diagonal 
matrix in which Gph

 is the variance component model for 
the hth trait by environment combination. More parsimoni-
ous forms of �� can be used, including those which assume 
separability between traits and environments. Lastly, the 
form of R is given by:

where Rt is a s × s unstructured matrix between traits, 
Re = ⊕

p

j=1
Rej

 is a n × n block diagonal matrix in which Rej
 

is the two-dimensional spatial model for the jth environment 
and Rte = ⊕

ps

h=1
𝜎2
teh
Inh is a ns × ns diagonal matrix in which 

�2
teh

 is the residual specific variance for the hth trait by envi-
ronment combination. This model provides a general frame-
work for the residuals which enables a different correlation 
between traits for each environment and a different correla-
tion between columns and rows for each trait by environment 
combination. This model is compared to three other residual 
variance models in “Results” (also see Table 3).

Model for the GET effects

Following Tolhurst et al. (2019), the GET effects are par-
titioned into additive and non-additive GET effects:

The additive genetic variance matrix is given by 
�� = ��� ⊗�� , where ��� is a ps × ps matrix between trait 
by environment combinations and �� is a v × v genomic rela-
tionship matrix between genotypes (VanRaden 2008). The 
non-additive genetic variance matrix is given by �� , which 
is chosen as either a non-separable diagonal model or a non-
separable factor analytic model of order one. Other forms of 
�� can be used, including those which match �� . The forms 
of �� considered below include:

•	 A non-separable model
•	 Two separable models
•	 Two partially separable models.

All variance models are summarised in Table 4, with full 
details provided below.

⎡⎢⎢⎣

u

��
e

⎤⎥⎥⎦
∼ N

⎛⎜⎜⎝

⎡⎢⎢⎣

0

0

0

⎤⎥⎥⎦
,

⎡⎢⎢⎣

G 0 0

0 �� 0

0 0 R

⎤⎥⎥⎦

⎞⎟⎟⎠
,

(2)R = Rt ⊗ Re + ���,

(3)u = �� + �� and G = �� +��.
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Non‑separable model

The non-separable model is fitted directly to the indi-
vidual trait by environment combinations in ��� . The vari-
ance matrix for �� is therefore given by:

where ��� is a ps × ps non-separable matrix (Appendix 1). 
The non-separable model provides a general framework for 
GETI which enables a different GEI pattern for each trait 
and a different GTI pattern for each environment.

(4)�� = ��� ⊗��,

Non‑separable factor analytic model

Smith et al. (2007) proposed a non-separable factor analytic 
model which is fitted directly to ��� . This model is hereafter 
referred to as the NFAk model, where k denotes the number 
of common factors. The NFAk model is given by:

where � =
[
�1 … �k

]
 is a ps × k non-separable matrix of 

trait by environment loadings, f =
(
f⊤
1
,… , f⊤

k

)⊤ is a vk-vector 
of genotype scores and � =

(
�

⊤

1
, … , �⊤

ps

)⊤ is a vps-vector of 
regression residuals which are specific to individual trait 
by environment combinations. This model is analogous to 

(5)
�� =

(
�1 ⊗ Iv

)
f1 +…+

(
�k ⊗ Iv

)
fk + �

=
(
�⊗ Iv

)
f + �,

Table 3   Summary of the residual variance models considered in this paper

Presented for each model is the form of the residual variance matrix ( R ), number of estimated variance parameters and the reference
Note: The spatial model ( 𝜎2�c ⊗ �r ) is chosen as a two-dimensional auto-regressive process of order one (Gilmour et al. 1997). Constraints are 
required in all separable and partially separable models to ensure identifiability during estimation. All models have standard ordering except for 
res

2
 (traits within environments)

Model Description R Parameters Reference

res
1

Non-separable ⊕
ps

h=1
Rh Rh = 𝜎2

h
�
ch
⊗ �

rh
3ps  Smith et al. (2007)

res
2

Separable within envs ⊕
p

j=1
Rj Rj = R

US

tj
⊗ R

ej

R
ej
= 𝜎2

j
�
cj
⊗ �

rj

p[s(s + 1)∕2 + 2]  Smith et al. (2007)

res
3

Separable across envs �US

�
⊗ �� �� = ⊕

p

j=1
R

ej
s(s + 1)∕2 + 3p − 1

res
4

Partially separable �US

�
⊗ �� + ��� R

te
= ⊕

ps

h=1
𝜎2

teh
Inh

s(s + 1)∕2 + p(s + 3) − 1 This paper

Table 4   Summary of the variance models for the additive GET effects considered in this paper

Presented for each model is the form of the additive genetic variance matrix between trait by environment combinations ( ��� ), number of esti-
mated variance parameters and the reference
Note: The vps-vector of additive GET effects is given by �� , with var(��) = ��� ⊗�� , where Gps×ps

te
 is either a non-separable, separable or partially 

separable matrix between trait by environment combinations and Gv×v
g

 is a genomic relationship matrix between genotypes. Constraints are required in 
all separable and partially separable models to ensure identifiability during estimation
∗Equivalent to a separable unstructured model

Type Model Description ��� Parameters References

Non-separable ndiag Non-separable diagonal ⊕
ps

h=1
𝜎2

h
ps

NFAk Non-separable factor 
analytic

���⊤
+� ps(k + 1) − k(k − 1)∕2  Smith et al. (2007)

Separable sdiag Separable diagonal
[
⊕s

i=1
𝜎2

ti

]
⊗

[
⊕

p

j=1
𝜎2

ej

]
p + s − 1

mdiag Main effects plus diagonal G
US

t
⊗

[
Jp +⊕

p

j=1
𝜎2

ej

]
s(s + 1)∕2 + p  Montesinos-López et al. 

(2016)
mus∗ Main effects plus unstruc-

tured
G

US

t
⊗

[
Jp +G

US

e

]
[s(s + 1) + p(p + 1)]∕2 − 1  Montesinos-López et al. 

(2019)
Partially sepa-

rable
comp Compound symmetry G

US

t
1

⊗ Jp +G
US

t
2

⊗ Ip
s(s + 1)  Volpato et al. (2019)

UFAke Unstructured factor 
analytic

G
US

t
⊗ �

e
D

e
�⊤

e
+�

t
⊗ I

p
s(s + 3)∕2 + pke
− ke(ke − 1)∕2 − 1

 Smith et al. (2019)

SFAkt-ke Partially separable factor 
analytic

�
t
D

t
�⊤

t
⊗ �

e
D

e
�⊤

e
+�

t
⊗�

e
s(kt + 1) − kt(kt − 1)∕2 This paper
+p(ke + 1) − ke(ke − 1)∕2 − 2
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a multiple regression with k terms, where the loadings are 
latent covariates and the scores are regression slopes.

Following Smith et al. (2021), the loadings are assumed 
to have orthonormal columns, such that �⊤� = Ik . It is also 
assumed that:

where D = ⊕k
l=1

dl is a diagonal matrix with score variances 
ordered as d1 > … > dk and � = ⊕

ps

h=1
𝜓h is a diagonal 

matrix with specific variances denoted by �h . The variance 
matrix for �� is therefore given by:

This variance matrix is an extension of Smith et al. (2007) 
for GS.

Separable models

The separable models assume complete separability between 
traits and environments, such that ��� can be represented by 
the Kronecker product �� ⊗�� . The variance matrix for �� 
can therefore be rewritten as:

where �� is a s × s matrix and �� is a p × p matrix (Appen-
dix 1). Separable models have fewer variance parameters 
than non-separable models and capture the factorial struc-
ture between traits and environments. Note, however, sepa-
rable models are restrictive since they assume the same GEI 
pattern for each trait and the same GTI pattern for each envi-
ronment. The two separable models of Montesinos-López 
et al. (2016) and Montesinos-López et al. (2019) are con-
sidered in this paper (see Table 4).

Partially separable models

The partially separable models maintain the appealing 
features of the  separable models but fit a more general 
framework for GETI like the non-separable model. The two 
partially separable models below are obtained by fitting an 
additional variance for individual traits or individual traits 
and environments. This relaxes the assumption of separa-
bility and produces a structure that can no longer be repre-
sented by the Kronecker product of two matrices. The vari-
ance matrix for ua can therefore be rewritten as:

where Dte is a ps × ps diagonal matrix (Appendix 1).

[
f

�

]
∼ N

([
0

0

]
,

[
D 0

0 �

]
⊗��

)
,

(6)�� =
(
���⊤ +�

)
⊗��.

(7)�� = �� ⊗�� ⊗��,

(8)�� = �� ⊗�� ⊗�� + ��� ⊗��,

Unstructured factor analytic model

Smith et al. (2019) proposed a partially separable model 
which includes an unstructured matrix for �� and a factor 
analytic matrix for �� . This model is hereafter referred to 
as the UFAke model, where ke denotes the number of com-
mon environmental factors. The UFAke model is given by:

where �e =
[
�e1

… �eke

]
 is a p × ke matrix of environmental 

loadings, �� =
(
f⊤
e1
,… , f⊤

eke

)⊤ is a vke-vector of genotype 

scores and �t =
(
�

⊤

t1
,… , �⊤

ts

)⊤ is a vps-vector of regression 
residuals which are specific to individual traits. This model 
is analogous to a multiple regression with ke terms, where 
the loadings are latent covariates and the scores are regres-
sion slopes which are correlated across traits.

It is assumed that �⊤

e
�e = Ike , and that:

where �� is a s × s unstructured matrix, �� = ⊕
ke
l=1

del is a 
diagonal matrix with score variances ordered as 
de1 > … > deke

 and �t = ⊕s
i=1

𝜓ti
 is a diagonal matrix with 

specific variances denoted by �ti
 . The variance matrix for �� 

is therefore given by:

This variance matrix is an extension of Smith et al. (2019) 
for GS.

Partially separable factor analytic model

The partially separable model developed below extends 
the UFAke model to include a factor analytic matrix for 
�� as well as a factor analytic matrix for �� . The variance 
matrix for �� is therefore given by:

where �t =
[
�t1

… �tkt

]
 is a s × kt matrix of trait loadings 

and �e =
[
�e1

… �eke

]
 is a p × ke matrix of environmental 

loadings, in which kt and ke denote the number of common 
trait and environmental factors, respectively. The loadings 
matrices are assumed to have orthonormal columns, such 
that �⊤

t
�t = Ikt and �⊤

e
�e = Ike . The diagonal matrices 

�� = ⊕
kt
l=1

dtl and �� = ⊕
ke
l=1

del include score variances for 
individual trait and environmental factors, while 

(9)

�� =
(
Is ⊗ �e1

⊗ Iv
)
fe1 +…+

(
Is ⊗ �eke

⊗ Iv
)
feke

+ �t

=
(
Is ⊗ �e ⊗ Iv

)
�� + �t,

[
��
�t

]
∼ N

([
0

0

]
,

[
�� ⊗ �� 0

0 �t ⊗ Ip

]
⊗��

)
,

(10)�� =
(
�� ⊗ �e���

⊤

e
+�t ⊗ Ip

)
⊗��.

(11)�� =
(
�t���

⊤

t
+�t

)
⊗

(
�e���

⊤

e
+�e

)
⊗��,
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�t = ⊕s
i=1

𝜓ti
 and �e = ⊕

p

j=1
𝜓ej

 include specific variances 
for individual traits and environments.

The separable variance matrix in Eq.  11 is restrictive 
because it assumes the same GEI pattern for each trait and 
the same GTI pattern for each environment. This matrix 
can be modified to enable different GEI and different GTI 
patterns:

This model is hereafter referred to as the SFAkt-ke model. 
The SFAkt-ke model for �� is given by:

where �t ⊗ �e is the ps × ktke separable matrix of trait and 
environmental loadings, ��� =

(
f⊤
te1
,… , f⊤

tektke

)⊤ is a vktke-vec-
tor of genotype scores and �te =

(
�

⊤

te1
, … , �⊤

teps

)⊤ is a vps-
vector of regression residuals which are specific to individ-
ual trait by environment combinations. This model is 
analogous to a multiple regression across two dimensions 
with kt and ke terms, where the loadings are latent covariates 
for each dimension and the scores are joint regression slopes 
across both dimensions.

Lastly, it follows from Eq.  12 that:

Other (non-separable) forms of the specific variance matrix 
can be used, including �t ⊗ �p + �s ⊗�e and � = ⊕

ps

h=1
𝜓h , 

but note that the former is not scale invariant and the latter 
may not be necessary for higher order models in which the 
variance explained by the regression residuals is small.

Model estimation

All models for the additive and non-additive GET effects 
were implemented within the linear mixed model in Eq.  1 
and fitted using ASReml-R (Butler 2022). The partially sep-
arable factor analytic linear mixed model (SFA-LMM) is 
given by:

where Z�te
= �t ⊗ Z

[
�e ⊗ Iv

]
 and un  is modelled with a 

non-separable factor analytic model of order one. The other 
two models are referred to as the non-separable factor ana-
lytic linear mixed model (NFA-LMM) and the unstructured 

(12)�� =
(
�t���

⊤

t
⊗ �e���

⊤

e
+�t ⊗�e

)
⊗��.

(13)

�� =
(
�t1

⊗ �e1
⊗ Iv

)
fte1 +…

+
(
�tkt

⊗ �eke
⊗ Iv

)
ftektke

+ �te

=
(
�t ⊗ �e ⊗ Iv

)
��� + �te

[
���
�te

]
∼ N

([
0

0

]
,

[
�� ⊗ �� 0

0 �t ⊗�e

]
⊗��

)
.

(14)
y = X� + Z�te

��� +
(
Is ⊗ Z

)
�te +

(
Is ⊗ Z

)
��

+
(
Is ⊗ ��

)
�� + e,

factor analytic linear mixed model (UFA-LMM). The SFA-
LMM is used to demonstrate all remaining methods below, 
but note that similar results can be obtained for the NFA-
LMM and UFA-LMM.

Constraints are required in the SFA-LMM to ensure unique 
solutions for G and R. In particular, the top left elements in �t 
(although not strictly required), �t and Rt are set to one, the 
upper right triangle in �t and/or �e are set to zero when kt and/
or ke > 1 and Dt ⊗ De is set to Ikt ⊗ Ike . Let the loadings and 
scores with these constraints be denoted by �∗

t
⊗ �∗

e
 and f∗

te
 . 

The loadings and scores can be rotated back to their original 
form in Eq. 13 for interpretation:

where fte =
(
D

1∕2

t
V⊤

t
⊗ D1∕2

e
V⊤

e
⊗ Iv

)
f∗
te

 . The rotation matri-
ces are obtained via the singular value decompositions 
�∗

t
= UtD

1∕2

t
V⊤

t
 and �∗

e
= UeD

1∕2
e

V⊤

e
.

ASReml-R obtains REML estimates of the key variance 
parameters in the SFA-LMM (distinguished by hats) and 
EBLUPs of the key random effects (distinguished by tildes). 
A more efficient computational approach for fitting the SFA-
LMM is developed in the Supplementary Material. Lastly, note 
that the phenotypes for each trait were scaled to unit variance 
to assist convergence in ASReml-R and then transformed back 
to their original scale after estimation.

Model selection and interpretation

Model selection in the SFA-LMM was achieved using a com-
bination of formal and informal criteria. Formal selection was 
achieved using the Akaike Information Criterion (AIC) and 
informal selection was achieved using measures of variance 
explained by the common factors. The percentage of variance 
explained for the hth trait by environment combination is given 
by:

where Ĝte = �̂tD̂t�̂
⊤

t
⊗ �̂eD̂e�̂

⊤

e
+ �̂t ⊗ �̂e and ⊘ is the 

Hadamard division operator. The overall measure, v̄ , is then 
obtained by averaging vh across all ps trait by environment 
combinations. Similar measures are also obtained for the ith 
trait and jth environment, vti and vej , by averaging vh across 
all p environments and all s traits, respectively.

Interpretation from the SFA-LMM was achieved using the 
overall variance matrices between traits and between environ-
ments. The variance matrix between traits for the jth environ-
ment is given by:

(15)�t = �∗
t
VtD

−1∕2

t
and �e = �∗

e
VeD

−1∕2
e

,

(16)vh = 100 diag
(
�̂tD̂t�̂

⊤

t
⊗ �̂eD̂e�̂

⊤

e

)
h
⊘ diag

(
Ĝte

)
h
,

(17)Ḡtj
= �̂tD̂t�̂

⊤

t
[�̂ej

D̂e�̂
⊤

ej
] + �̂t𝜓̂ej

,
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where �̂ej
=
[
𝜆̂ej1 … 𝜆̂ejke

]
 . The variance matrix between 

environments for the ith trait is given by:

where �̂ti
=
[
𝜆̂ti1 … 𝜆̂tikt

]
 . The overall variance matrices are 

then obtained by averaging Ḡtj
 across all p environments and 

Ḡei
 across all s traits.

Selection tools and index

The selection tools of Smith and Cullis (2018) were extended 
for the SFA-LMM to enable efficient selection across multiple 
traits and multiple environments. These tools provide meas-
ures of overall performance and stability for each genotype.

The overall performance of all genotypes for the ith trait is 
given by:

where 𝜆̄e1 is the mean estimated loading for the first envi-
ronmental factor and f̃ei1 is the corresponding v-vector of 
predicted scores, with f̃ei =

(
�̂ti

⊗ Ike ⊗ Iv
)
f̃te . OP i  can 

therefore be viewed as the expected genotype performance 
for the ith trait in an average environment. The separate OPi 
measures can also be combined across traits to form a selec-
tion index given by:

where �i is the weight for the ith trait and ŌPi is the corre-
sponding v-vector of standardised overall performances, 
with ŌPi = f̃ei1

/√
de1�̂ti

D̂t�̂
⊤

ti
.

Lastly, the stability of all genotypes for the ith trait is given 
by:

(18)Ḡei
= [�̂ti

D̂t�̂
⊤

ti
]�̂eD̂e�̂

⊤

e
+ 𝜓̂ti

�̂e,

(19)OPi = 𝜆̄e1 f̃ei1 ,

(20)I = 𝜔1ŌP1 +…+ 𝜔sŌPs,

(21)RMSDi =

√
diag

(
ẼiẼ

⊤

i

)
∕p,

where Ẽi = F̃ei
�̂

⊤

e
− f̃ei1 �̂

⊤

e1
 is the v × p matrix of additive 

GET effects corresponding to the higher order factors and 
F̃ei

=
[
f̃ei1 … f̃eike

]
 is the v × ke matrix of predicted genotype 

scores. RMSDi  can therefore be viewed as the variance in 
genotype performance for the ith trait across all environ-
ments. The inclusion of RMSDi within the same selection 
index as OPi is the topic of current research.

Results

This section presents the results from fitting the non-sepa-
rable, separable and partially separable linear mixed models 
to the multi-trait MET dataset. The variance models for the 
additive GET effects are summarised in Table 4. The data-
set is summarised in Tables 1 and 2, and comprises 267 
genotypes with marker data that were evaluated for three 
agronomic traits (YLD, DTF, and PHT) across 12 growing 
environments in the Australian Rice Breeding Program. The 
results from each model are detailed below, along with the 
extension of the selection tools for the SFA-LMM.

Baseline linear mixed models

The analyses began by fitting four baseline linear mixed 
models which assume the additive GET effects are inde-
pendent across different trait by environment combinations 
(Table 5a). These analyses resemble single-trait single-envi-
ronment analyses that should be performed on multi-trait 
MET datasets before more complex models are considered. 
These analyses were used to inspect the experimental design, 
address spatial variations and identify potential outliers.

The single-trait single-environment analyses were also 
used to compare the four residual models in Table 3. The 
non-separable and separable models in res1 and res2 pro-
vide a good fit to the dataset, but note the former does not 
model the residual correlation between traits and the latter 
assumes the same residual correlations between columns 

Table 5   Non-separable linear 
mixed models fitted to the 
multi-trait MET dataset

Presented for each model is the number of estimated residual or additive genetic variance parameters, 
residual log-likelihood, AIC and overall percentage of variance explained ( ̄v)
Note: A non-separable diagonal model (ndiag) is used for the additive and non-additive GET effects in all 
baseline linear mixed models and a non-separable factor analytic model of order one (NFA1) is used for the 
non-additive GET effects in all factor analytic linear mixed models. The selected models are distinguished 
with bold font

(a) Baseline linear mixed models (b) Non-separable factor analytic linear mixed models

rModel rPars Loglik AIC aModel aPars Loglik AIC v̄

res
1

108 3391.8 − 6315.7 NFA1 72 3686.3 − 6833.0 60.1
res

2
96 3344.6 − 6245.2 NFA2 107 3780.0 − 6940.0 76.3

res
3

41 3118.1 − 5902.2 NFA3 141 3834.7 − 6981.5 90.0
res� 77 3418.4 − 6430.9 NFA4 174 3875.3 − 6993.0 91.9
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and rows for all traits in each environment. The separable 
model in res3 provides the poorest fit and is the most restric-
tive since it assumes the same residual correlation between 
traits for all environments and the same residual correlations 
between columns and rows for all traits in each environment. 
Conversely, the partially separable model in res4 provides 
the best fit and is the least restrictive. This model extends 
res3 to include a specific variance matrix which enables a 
different residual correlation between traits for each environ-
ment and a different residual correlation between columns 
and rows for each trait by environment combination. The 
partially separable model in res4 was therefore fitted in all 
subsequent analyses.

Non‑separable factor analytic linear mixed model

A series of NFA-LMMs were then fitted which include a 
non-separable model for the additive GET effects (Table 5b). 
These models provide a much better fit than the baseline 
linear mixed models since they assume the additive GET 
effects are correlated across different trait by environment 
combinations. The final order was selected using the formal 
and informal measures in “Model selection and interpreta-
tion”. Three factors (k = 3) were required to achieve an 
adequate fit and overall percentage of additive genetic vari-
ance explained ( ̄v = 90.0% ), with vti > 80% and vej > 70% 
for all traits and environments. The 90.0% of variance 
explained by the common factors reflects GETI common to 
multiple trait by environment combinations while  the 
remaining 10.0% reflects residual GETI specific to individ-
ual traits and environments. Lastly, note that  the NFA3 
model explained 82.9% of the total genetic variance so that 
higher order models were not necessary.

Unstructured factor analytic linear mixed model

A series of UFA-LMMs were then fitted which include a 
partially separable model for the additive GET effects with 
fewer variance parameters than the NFA-LMMs (Table 6a). 
Two environmental factors (ke = 2) were required to achieve 
an adequate fit and overall percentage of additive genetic 
variance explained ( ̄v = 83.2% ), with vti > 50% and 
vej > 70% for all traits and environments. The 83.2% of vari-
ance explained by the common factors reflects GETI com-
mon to multiple environments while the remaining 16.8% 
reflects residual GETI specific to individual traits. Lastly, 
note that  the UFA2 model explained 77.1% of the total 
genetic variance.

Partially separable factor analytic linear mixed 
model

A series of SFA-LMMs were then fitted which include a 
partially separable model for the additive GET effects with 
fewer variance parameters than the NFA-LMMs (Table 6b). 
The SFA-LMM does have more variance parameters than 
the UFA-LMM for the current dataset, but note that the con-
verse will be true for a more typical number of traits. Three 
trait factors (kt = 3) and two environmental factors (ke = 2) 
were required to reach an adequate fit and overall percentage 
of additive genetic variance explained ( ̄v = 83.0% ), with 
vti > 60% and vej > 60% for all traits and environments. The 
83.0% of variance explained by the common factors reflects 
GETI common to multiple traits and multiple environments 
while the remaining 17.0% reflects residual GETI specific 
to individual traits and environments. Lastly, note that the 
SFA3-2 model explained 78.2% of the total genetic 
variance.

Table 6   Separable and partially 
separable linear mixed models 
fitted to the multi-trait MET 
dataset

Presented for each model is the number of estimated additive genetic variance parameters, residual log-
likelihood, AIC and overall percentage of variance explained ( ̄v)
 Note: A non-separable factor analytic model of order one (NFA1) is used for the non-additive GET effects 
in all factor analytic linear mixed models, whereas a non-separable diagonal model (ndiag) is used in all 
remaining linear mixed models. The percentage of variance explained for comp and mdiag represents the 
variance explained by the main effects alone. The selected models are distinguished with bold font

(a) Unstructured factor analytic linear mixed models (b) Partially separable factor analytic linear mixed 
models

aModel aPars Loglik AIC v̄ aModel aPars Loglik AIC v̄

sdiag 14 3355.0 − 6348.0 – comp 12 3559.1 − 6760.2 74.6
mdiag 18 3571.0 − 6772.0 75.3 SFA1-1 28 3618.4 − 6774.7 62.7
mus 83 − – – SFA2-1 30 3671.8 − 6877.6 65.8
UFA1 20 3672.8 − 6899.6 80.1 SFA3-1 31 3687.9 − 6907.8 77.0
UFA2 31 3706.3 − 6944.5 83.2 SFA3-2 42 3726.4 − 6962.7 83.0
UFA3 41 3715.0 − 6942.1 85.3 SFA3-3 52 3731.1 − 6952.3 84.3
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Model comparison

Formal model selection criteria was used to compare all 
variance models for the additive GET effects in Table 4. 
The separable model of Montesinos-López et al. (2016), 
mdiag, is a multi-trait extension of the main effects plus 
diagonal model. This model provides a poor fit and is 
restrictive since it assumes the same GEI pattern for each 
trait and the same GTI pattern for each environment. The 
separable model of Montesinos-López et al. (2019), mus, 
extends mdiag to include an unstructured matrix between 
traits as well as between environments, but note that this 
model failed to converge. The partially separable model of 
Volpato et al. (2019), comp, was also fitted, but note that this 
model provides the poorest fit and is also restrictive since 
it assumes the same covariance between all environments 
for each trait. All factor analytic linear mixed models fit 
the dataset better than mdiag and comp since they capture 
different GEI and different GTI patterns, and also fit a more 
realistic model for GETI. All selected factor analytic linear 
mixed models were comparable, with the NFA3 model pro-
viding the best fit followed by the SFA3-2 model and the 
UFA2 model. Note, however, the NFA3 model has 3.5–5 
times more additive genetic variance parameters than the 
SFA3-2 and UFA2 models (141 compared to 42 and 31). 
The SFA3-2 model does have more variance parameters than 
the UFA2 model for the current dataset since it includes 
a specific variance for individual traits and environments, 
rather than just traits (14 compared to 3). These results sug-
gest that the SFA-LMM will provide a superior fit than the 
UFA-LMM with fewer variance parameters as the number 

of traits and environments increase. Further interpretation 
of the SFA3-2 model is presented below.

Model summaries and interpretation

Table 7 presents a summary of the three agronomic traits and 
12 growing environments for the SFA3-2 model. This 
table shows that the additive genetic variances are different 
for each trait and environment. The variance for each trait 
was 0.45 for YLD, 5.32 for DTF and 18.35 for PHT. The 
variance for each  environment was highest for 18MBE 

Table 7   The SFA3-2 model, 
Part 1: Summary of agronomic 
traits and growing environments

Presented for each trait and environment is the additive genetic variance, percentage of variance explained 
(vti and vej ) and the REML estimates of constrained factor loadings (�̂∗

tl
 and �̂∗

el
) . The traits are grain yield, 

days to flowering and plant height
Note: The overall additive genetic variance and percentage of variance explained (v̄ ) are presented in the 
final row

(a) Traits Var vti �̂
∗

t
1

�̂
∗

t
2

�̂
∗

t
3

(b) Envs Var vej �̂
∗

e
1

�̂
∗

e
2

YLD 0.45 59.0 1.00 0.00 0.00 17MB
E

13.04 100.0 0.59 0.00
DTF 5.32 100.0 − 0.16 5.13 0.00 17MB

M
5.30 81.2 0.35 0.11

PHT 18.35 90.2 − 2.78 − 3.07 − 8.14 17MB
L

2.74 100.0 0.26 0.08
Overall 8.04 83.0 – – – 17MV

E
5.89 85.2 0.39 − 0.01

17MV
M

6.53 99.7 0.34 0.24
17MV

L
6.23 59.8 0.27 0.21

18MB
E

16.86 89.1 0.59 0.32
18MB

M
13.52 100.0 0.60 − 0.09

18MB
L

8.18 82.4 0.40 0.22
18MV

E
3.70 68.4 0.23 0.17

18MV
M

6.03 62.6 0.33 0.13
18MV

L
8.44 68.2 0.35 0.26

Overall 8.04 83.0 – –

Table 8   The SFA3-2 model, Part 2: Pairwise additive genetic correla-
tions between grain yield, days to flowering and plant height for each 
environment

Env YLD-DTF YLD-PHT DTF-PHT

17MB
E

− 0.03 − 0.30 − 0.33
17MB

M
− 0.02 − 0.21 − 0.32

17MB
L

− 0.03 − 0.30 − 0.33
17MV

E
− 0.02 − 0.23 − 0.32

17MV
M

− 0.03 − 0.30 − 0.33
17MV

L
− 0.01 − 0.09 − 0.27

18MB
E

− 0.03 − 0.25 − 0.32
18MB

M
− 0.03 − 0.30 − 0.33

18MB
L

− 0.02 − 0.22 − 0.32
18MV

E
− 0.02 − 0.13 − 0.29

18MV
M

− 0.01 − 0.10 − 0.28
18MV

L
− 0.02 − 0.13 − 0.29

Overall − 0.02 − 0.20 − 0.31
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(16.86) and lowest for 17MBL (2.74). By design, the overall 
variance and the overall variance explained is the same 
across traits and environments, with 8.04 and 83.0%, respec-
tively. The percentage of variance explained for traits, vti , 
was 59.0% for YLD, 100.0% for DTF and 90.2% for PHT. 
The percentage of variance explained for environments, vej , 
was highest for three Murrumbidgee Valley environments 
(100.0%) and lowest for 17MVL (59.8%) and the three Mur-
ray Valley environments in 2018 (62.6–68.4 %). Lastly, 
Table 7 presents the REML estimates of the constrained fac-
tor loadings. These matrices demonstrate the constraints 
required during estimation (see “Model estimation”).

Table  8 shows that the additive genetic correlations 
between traits are different for each environment. These 
correlations were obtained from Eq.  17. The correlations 
between YLD and DTF were almost zero for all environ-
ments, with − 0.02 overall. The correlations between YLD 
and PHT were highest for 17MVL (− 0.09) and lowest for 
17MVM and three Murrumbidgee Valley  environments 
(−  0.30), with −  0.20 overall. Lastly, the correlations 

between DTF and PHT were again highest for 17MVL 
(− 0.27) and again lowest for 17MVM and the same three 
Murrumbidgee Valley environments (− 0.33), with − 0.31 
overall.

The heatmaps in Fig. 4 show that the additive genetic 
correlations between environments are different for each 
trait. These correlations were obtained from Eq.  18 and 
are ordered based on a dendrogram applied to YLD (see 
Cullis et al. 2010). The GEI patterns are substantially dif-
ferent for each trait, especially YLD. The correlations for 
YLD range from 0.13 to 0.99 (mean of 0.48), for DTF 
they range from 0.69 to 1.00 (mean of 0.92) and for PHT 
they range from 0.57 to 0.99 (mean of 0.83). Note that the 
lowest correlations for YLD correspond to 17MVL and 
the three Murray Valley environments in 2018, which also 
have the lowest variance explained (see Table 7). The esti-
mated correlations for these environments are therefore 
an artifact of having low variance explained, and may not 
reflect the true correlations.  

Fig. 4   Heatmaps of the additive genetic correlation matrices between 
environments for a grain yield, b days to flowering, c plant height and 
d overall. All matrices are ordered using the dendrogram applied to a. 

The colourkey ranges from 1 (agreement in rankings) through 0 (dis-
similarity in rankings) to − 1 (reversal of rankings)
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Tables 7, 8 and Fig. 4 provide summaries of GETI from 
the perspective of the traits and environments. The selection 
tools demonstrated below enable GETI to be summarised 
from the perspective of the genotypes.

Selection tools and index

The selection tools were applied to the SFA3-2 model in 
terms of the additive GET effects. These tools provide 

breeders with measures of overall performance (OPi  ) and 
stability (RMSDi  ) for each trait. Selection will be demon-
strated individually for YLD and then simultaneously for all 
traits using a selection index.

Overall performance and stability

The OPi  measure for YLD is a function of the first factor, 
which explains 54.3% of the additive genetic variance. Since 
all loadings for this factor are positive, the fitted GET effects 

Fig. 5   Plant breeding selection 
tools for a grain yield, b days 
to flowering and c plant height. 
The latent regression plots on 
the left show OP

i
 for refer-

ence genotypes G1-G4, which 
is given by the fitted value 
at the mean loading (vertical 
dashed line). The plots on the 
right show OP

i
 vs RMSD

i
 for 

267 genotypes, with reference 
genotypes G1-G4 and four 
check cultivars distinguished 
by colour and data points dis-
tinguished with closed circles 
if the OP

i
 accuracy is > 0.80 

or open otherwise. The vari-
ance explained by the first and 
second factors is also labelled 
(color figure online)

G1
G2

G3

G4

G1
G2

G3

G4

G1

G2

G3

G4 G1

G2

G3

G4

G1

G2

G3

G4

G1

G2

G3

G4

(a) YLD (t/ha)

(b) DTF (days)

(c) PHT (cm)

0.2 0.3 0.4

−2

−1

0

1

0 0.1 0.2 0.3 0.4

−2

−1

0

1

0.2 0.3 0.4
−8

−4

0

4

0 0.5 1 1.5 2
−8

−4

0

4

0.2 0.3 0.4

−10

0

10

20

30

0 1 2 3 4

−10

0

10

20

30

REML estimates of first factor loadings Stability (RMSD)

E
B

LU
P

s 
of

 a
dd

iti
ve

 G
E

T 
ef

fe
ct

s

Murrumbidgee Valley Murray Valley Doongara Langi Topaz

O
verall Perform

ance (O
P

)

v1 = 54.3%

v1 = 92.5%

v1 = 83.5%

v2 = 4.7%

v2 = 7.5%

v2 = 6.7%

Kyeema



	 Theoretical and Applied Genetics         (2023) 136:104 

1 3

  104   Page 14 of 19

capture non-crossover GEI only (see Smith and Cullis 2018). 
This feature can be visualised using the latent regression plot 
in Fig. 5a for reference genotypes G1-G4, where the regres-
sion lines diverge and never crossover. The OP i  for each 
genotype is therefore given by the fitted GET effect at the 
mean loading of 0.28 (vertical dashed line), that is 0.69 for 
G1, 0.35 for G2, − 0.56 for G3 and − 1.36 t/ha for G4. This 
measure reflects the expected YLD performance of G1-G4 
in an average environment.

The RMSDi  measure for YLD is a function of the sec-
ond factor, which only explains 4.7% of the additive genetic 
variance. Since this factor comprises both positive and neg-
ative loadings, the regression lines crossover (not shown) 
and the fitted GET effects predominately capture crossover 
GEI only. The RMSDi measure can also be visualised using 
the latent regression plot in Fig. 5a. The RMSDi  for each 
genotype is given by the root mean square of the deviations 
around the first factor regression line, that is 0.01 for G1, 
0.03 for G2, 0.20 for G3 and 0.26 t/ha for G4. This measure 
reflects the variance in YLD performance of G1-G4 across 
all environments.

Selection across all genotypes for YLD can then be 
achieved using the OPi  vs RMSDi plot in Fig. 5a. Consist-
ently high yielding genotypes occur at the top left of this 
figure. For example, G1 is high yielding and stable since it 
has high OPi and low RMSDi. Conversely, low yielding and 
unstable genotypes which have low OPi and high RMSDi 
occur at the bottom right (G4 and Topaz). The remaining 
highlighted genotypes are above average (G2, Doongara and 
Langi) or below average (G3 and Kyeema) yielding, with 
different stabilities. Similar interpretation can be made for 
DTF and PHT in Fig. 4a and 4b, but note that the first factor 
explains 92.5 and 83.5 % of the additive genetic variance for 
these traits. Lastly note that genotypes of high interest occur 
at the bottom left for these traits, such as G3 which flowers 
consistently early and G2 which grows consistently short.

Selection index

Simultaneous selection across all traits can be achieved 
using the selection index in Fig. 6. For example, G1 is much 
higher yielding than G2, however, they have a very similar 
index since G2 flowers earlier and is much shorter than G1. 
Both genotypes also have a higher index than the four check 
cultivars and G3. Conversely, G4 is the lowest yielding 
genotype and is much taller than all other test genotypes so 
it has the lowest index. Figure 6 provides breeders with an 
efficient way to select superior genotypes and examine GTI 
summarised over environments. Lastly, note that the weights 
used in this index are arbitrary (0.7 for YLD, − 0.2 for DTF 
and − 0.1 for PHT) and chosen to illustrate the concepts and 
methods developed in “Statistical models”.

Discussion

This paper developed a single-stage GS approach which 
incorporates information on multiple traits and multiple 
environments within a partially separable factor analytic 
framework. The advantage of using both sources of informa-
tion is that breeders can utilise GETI to obtain more accurate 
predictions across correlated traits and environments. The 
partially separable factor analytic linear mixed model (SFA-
LMM) developed in this paper was motivated by the need for 
a more parsimonious alternative to the non-separable factor 
analytic linear mixed model of Smith et al. (2007) and the 
unstructured factor analytic linear mixed model of Smith 
et al. (2019). The utility of the SFA-LMM was compared to 
GS extensions of these approaches, as well as the two sepa-
rable approaches of Montesinos-López et al. (2016, 2019) 
and the partially separable approach of Volpato et al. (2019).

Plant breeders select genotypes with superior perfor-
mance across a set of production environments for multiple 

Fig. 6   Parallel coordinate plot 
with standardised ŌP

i
 for grain 

yield, days to flowering and 
plant height, as well as the 
selection index with weights 
0.7, − 0.2 and − 0.1. The plot 
includes 267 genotypes, with 
reference genotypes G1-G4 and 
four check cultivars distin-
guished by colour and standard 
errors given by bars (color 
figure online)
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traits of commercial importance. Plant breeding datasets 
are therefore naturally generated as multi-trait MET data-
sets. Many of the current approaches for GS, however, only 
include models for GEI in single traits or models for GTI in 
single environments, but very few have considered appro-
priate models for GETI across multiple traits and multiple 
environments. Recently, Montesinos-López et al. (2016) 
and Montesinos-López et al. (2019) demonstrated separa-
ble models for GETI which assume the same GEI pattern 
for each trait and the same GTI pattern for each environ-
ment. Volpato et al. (2019) demonstrated a restrictive par-
tially separable model which assumes the same covariance 
between environments for each trait. The results of this paper 
show that the approaches of Montesinos-López et al. (2016) 
and Volpato et al. (2019) provide a poor fit to the dataset, 
whereas the approach of Montesinos-López et al. (2019) 
failed to converge using REML estimation.

The non-separable and partially separable factor analytic 
linear mixed models include more appropriate models for 
GETI which enable different GEI and different GET pat-
terns. The NFA-LMM includes a factor analytic matrix that 
is fitted directly to the individual trait by environment com-
binations. The UFA-LMM includes the Kronecker product 
of an unstructured matrix between traits and a factor analytic 
matrix between environments, with an additional specific 
variance matrix for traits. In this paper, both approaches 
were extended for GS to enable direct comparison with the 
SFA-LMM. The SFA-LMM developed in this paper is an 
extension of the UFA-LMM to include a factor analytic 
matrix between traits as well as between environments, 
with an additional specific variance matrix for traits as well 
as environments.

The SFA-LMM was compared to the UFA-LMM and 
NFA-LMM using a multi-trait MET dataset from the Aus-
tralian Rice Breeding Program. The dataset comprises 267 
genotypes that were evaluated in a single late stage for three 
traits across 12 environments in the south-eastern rice grow-
ing region of Australia. This dataset was used to illustrate 
the concepts and methods developed in “Statistical models”. 
Note, however, all data relevant to the current genotypes, 
including previous years and stages, should be considered 
when constructing a multi-trait MET dataset for selec-
tion (Smith et al. 2021). Also note that the current dataset 
does not include a typical number of traits, which has two 
important consequences: (i) it does not exploit the dimen-
sion reduction feature of the SFA-LMM and (ii) it does not 
highlight the large number of parameters typical to the UFA-
LMM and NFA-LMM. The practical implication of this will 
now be discussed.

The results of this paper show that all factor analytic lin-
ear mixed models provide a good fit to the dataset, with 
the NFA-LMM providing the best fit followed by the SFA-
LMM and the UFA-LMM. These results suggest that the 

assumption of separability between traits and environ-
ments is unlikely to hold true for the current dataset. The 
NFA-LMM therefore provides the best fit since it does 
not assume separability and therefore includes the most 
general framework for GETI. These results match that of 
Smith et al. (2007). Note, however, the selected NFA-LMM 
already has 3.5–5 times more additive genetic variance 
parameters than the selected SFA-LMM and UFA-LMM, 
and this will increase even further when there is a more 
typical number of traits. The selected SFA-LMM does have 
more parameters than the UFA-LMM for the current dataset, 
but this is because it required all three possible trait fac-
tors (which is equivalent to an unstructured matrix) and it 
includes a specific variance for individual traits and envi-
ronments (rather than just traits). These results suggest that 
the SFA-LMM will provide a better fit than the UFA-LMM 
with fewer variance parameters as the number of traits and 
environments increase.

There are three important results from fitting the SFA-
LMM to the multi-trait MET dataset: 

1.	 The overall percentage of additive genetic variance 
explained was 83.0%, with 59.0% for YLD, 100.0% for 
DTF and 90.2% for PHT (Table 7). The percentage of 
variance explained for environments ranged from 59.8 
to 100 %.

2.	 The additive genetic correlations between traits are 
higher for 17MVL and the three Murray Valley envi-
ronments in 2018 compared to all other environments 
(Table  8). The correlations between environments 
are much higher for DTF and PHT compared to YLD 
(Fig. 4).

3.	 The selection index was demonstrated for 267 genotypes 
in the multi-trait MET dataset.

Each point is now discussed further.
With regards to point 1, the percentage of additive genetic 

variance explained for YLD was 59.0%, despite fitting three 
trait factors and two environmental factors. This highlights 
two important issues. Firstly, Meyer (2009) warned about the 
challenges of using factor analytic models when the covari-
ances between traits cannot be attributed to a small number 
of common factors. This is often the case when the cor-
relations between traits are low and/or the number of traits 
is small. This challenge was observed when applying the 
SFA-LMM to the current dataset in which all three possible 
factors were required. Secondly, the 59.0% explained by the 
common factors most likely represents the percentage of 
GEI in YLD which is common to DTF and PHT, whereas 
the remaining 41.0% most likely reflects GEI specific to 
YLD alone. To a lesser extent, the 59.0 and 41.0 % repre-
sent GTI common and specific to individual environments, 
respectively. In the context of using separable models, these 
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results again highlight the importance of using traits with 
sufficiently similar GEI patterns (and environments with 
sufficiently similar GTI patterns). In the context of using 
the SFA-LMM, these results highlight the importance of 
including the specific variance matrix which enables dif-
ferent GEI and different GTI patterns and also accounts for 
any additional lack-of-fit for traits and environments. This 
approach may become useful when formally assessing the 
assumption of separability based on the amount of specific 
variation.

With regards to point 2, understanding the additive 
genetic correlations between traits and environments pro-
vides valuable information for making selection decisions. 
In terms of traits, the lack of correlation between YLD and 
DTF (− 0.02) indicates that the current breeding germplasm 
could be subject to selection for DTF without impacting 
YLD. For example, there is a need to develop high yielding 
cultivars for early and late flowering time, and the results 
suggest that both breeding targets could be pursued with 
the current germplasm. The negative correlation between 
YLD and PHT (− 0.20) indicates that shorter genotypes 
tend to be high yielding. This correlation reflects the breed-
ing objectives where selection has primarily been for high 
yielding and short genotypes. It could also reflect the inter-
action between lodging and yield since taller genotypes in 
the south-eastern growing region are typically more prone 
to lodging at maturity (Lewin and Heenan 1987). Lastly, 
the negative correlation between DTF and PHT (− 0.31) 
indicates that shorter genotypes tend to flower late. This 
correlation may be an indirect result of the breeding objec-
tive, that is selection for high yielding and short genotypes, 
whereas both early and late flowering genotypes are desired. 
In terms of environments, the correlations for YLD vary 
substantially, with no clear year, location or seasonal pattern 
(Fig. 4). This is consistent with the complex nature of GEI in 
the south-eastern growing region, which is driven by com-
plex environmental factors such as reproductive cold dam-
age from infrequent cool weather periods during microspore 
development (Williams and Angus 1994). Conversely, the 
correlations for DTF and PHT are high, which reflects their 
generally high line-mean heritability across environments in 
the breeding program and in rice germplasm more broadly 
(Wei et al. 2020).

With regards to point 3, rice breeders select genotypes 
that are consistently high yielding, early flowering and short. 
These selections can be made for each trait separately using 
the OPi  vs RMSDi  plots in Fig.  5. For example, genotype 
G1 would be selected for YLD, G3 would be selected for 
DTF and G2 would be selected for PHT. This approach is 
similar to threshold selection, with the exception that geno-
types are now selected based on their overall performance 
as well as their stability (Smith and Cullis 2018). With more 
than one trait, however, this approach is inefficient and 

ignores the genetic correlations between traits. The selec-
tion index in Fig. 6 weights the importance of individual 
traits based on the breeding objectives. This index utilises 
the common information shared across the traits and envi-
ronments within the SFA-LMM, and thence enables breed-
ers to make efficient selections. In this paper, the selection 
index was demonstrated using additive OPi  alone since the 
variance explained by the higher order factors is negligible, 
especially for YLD (4.7%). This index should be used to 
advance test genotypes for further evaluation and to select 
potential parents for future crosses, whereas an index based 
on total (additive plus non-additive) OPi  should be used to 
select cultivars for commercial release. The inclusion of 
RMSDi  within the same selection index is the topic of cur-
rent research.

The selection index provides important information on the 
overall merit of test genotypes compared to the check culti-
vars. The check cultivars provide a baseline for the three traits 
under selection. For example, Langi is a high yielding and soft 
cooking long grain cultivar which is broadly adapted across 
the Australian rice growing area. Doongara is a semi-dwarf 
japonica long grain cultivar that flowers late and can be high 
yielding under favourable conditions, but is susceptible to 
reproductive cold damage at all growth stages. Kyeema is a 
tall jasmine style cultivar that does not have the semi-dwarf 
trait. Kyeema was superseded by Topaz, which is a semi-dwarf 
jasmine style cultivar with later flowering time than the other 
three check cultivars. The selection index highlights numerous 
test genotypes which have a higher overall merit than the check 
cultivars (e.g. G1 and G2). This demonstrates the immediate 
genetic gain that can be made in the Australian rice breeding 
program. The parallel coordinate plot in Fig. 6 also highlights 
numerous test genotypes that should be retained in the pro-
gram as parents to maintain genetic variation in the traits under 
selection, although they may not be candidates for release.

The SFA-LMM developed in this paper includes a partially 
separable factor analytic model for GETI, which exploits the 
appealing features of separable and non-separable models. 
The utility of the SFA-LMM was compared to non-separable, 
separable and partially separable models for GS. The results 
show that the SFA-LMM provides a better fit than the sepa-
rable approaches and a comparable fit to the non-separable 
and partially separable approaches. In fact, all factor analytic 
linear mixed models provide a good fit since they include 
appropriate models for GETI. The distinguishing feature of 
the SFA-LMM is that it will include fewer parameters than 
all other approaches as the number of genotypes, traits and 
environments increases. This research represents an impor-
tant continuation in the advancement of statistical analyses of 
plant breeding datasets, particularly with the advent of high 
throughput phenotypic data involving a very large number of 
traits and environments.
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Appendix 1: Model separability

This appendix demonstrates the difference between non-sepa-
rable, separable and partially separable models. The examples 
below are demonstrated using two factors denoted by B and C, 
with s = 2 and p = 2 levels. Let A denote the factor with levels 
given by all combinations of B and C (ordered as C within B), 
such that ps = 4 . In this paper, factors B and C represent traits 
and environments while factor A represents their interaction.

A.1 Non‑separable models

Let A denote the ps × ps non-separable variance matrix for 
factor A given by:

where ahh is the variance of the hth level of A and ahi = aih is 
the covariance between the hth and ith level of A. This vari-
ance matrix is non-separable since it cannot be represented 
by the Kronecker product of two matrices. Note that there 
are ps(ps + 1)∕2 unique variance parameters in A.

A.2 Separable models

Let B and C denote the s × s and p × p variance matrices for 
factors B and C. The Kronecker product between B and C is 
a ps × ps separable variance matrix given by:

where biicjj is the variance of the ith level of B and jth level 
of C combination, bhicjk = bihckj is the covariance between 
the hth level of B and jth level of C combination and the ith 
level of B and kth level of C combination. Note that there are 
[s(s + 1) + p(p + 1)]∕2 unique variance parameters in B⊗ C.

A.3 Partially separable models

Let D denote another ps × ps variance matrix for factor A, 
which is now assumed to be diagonal. When D is added 
to the Kronecker product between B and C , the result is a 
ps × ps partially separable variance matrix given by:

A =

⎡⎢⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤⎥⎥⎥⎦
,

(22)

B⊗ C =

�
b11 b12
b21 b22

�
⊗

�
c11 c12
c21 c22

�

=

⎡
⎢⎢⎢⎣

b11c11 b11c12 b12c11 b12c12
b11c21 b11c22 b12c21 b12c22
b21c11 b21c12 b22c11 b22c12
b21c21 b21c22 b22c21 b22c22

⎤
⎥⎥⎥⎦
,

where biicjj and bhicjk are defined in Eq.  22 and dhh is the 
specific variance for the hth level of A. Note that there are 
[s(s + 1) + p(p + 1) + 2ps]∕2 unique variance parameters in 
B⊗ C + D . Also note that other (non-diagonal) forms of D 
can be used where appropriate.

A.4 Application to the partially separable factor 
analytic model

The partially separable factor analytic (SFAkt-ke ) model is 
based on a three-way separable structure given by:

where �� is a s × s factor analytic matrix between traits with 
kt factors, �� is a p × p factor analytic matrix between envi-
ronments with ke factors and �� is a v × v genomic rela-
tionship matrix between genotypes. Note that the separable 
structure in Eq.  23 is restrictive because it assumes the same 
genotype by environment interaction (GEI) pattern for each 
trait and the same genotype by trait interaction (GTI) pattern 
for each environment. This can be demonstrated using s = 2 
traits and p environments:

where �ti
=
[
�ti1 … �tikt

]
 is a kt-row-vector of loadings for 

the ith trait. The GEI pattern for each trait is therefore given 
by 

(
�e���

⊤

e
+�e

)
 but scaled by 

(
�t

1
���

⊤

t
1

+ 𝜓t
1

)
 and (

�t
2
���

⊤

t
2

+ 𝜓t
2

)
 for traits 1 and 2. The GTI pattern is also 

the same for each environment.
The SFAkt-ke model is obtained by modifying Eq.  23 to 

enable a different GEI pattern for each trait and a different 
GTI for each environment. This can also be demonstrated 
using s = 2 traits and p environments:

B⊗ C + D =

�
b11 b12

b21 b22

�
⊗

�
c11 c12

c21 c22

�
+

⎡⎢⎢⎢⎢⎢⎣

d11 0 0 0

0 d22 0 0

0 0 d33 0

0 0 0 d44

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

b11c11 + d11 b11c12 b12c11 b12c12

b11c21 b11c22 + d22 b12c21 b12c22

b21c11 b21c12 b22c11 + d33 b22c12

b21c21 b21c22 b22c21 b22c22 + d44

⎤⎥⎥⎥⎥⎥⎦

,

(23)
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The GEI patterns for traits 1 and 2 are now given by [
�t

1
���

⊤

t
1

]
�e���

⊤

e
+ 𝜓t

1
�e and 

[
�t

2
���

⊤

t
2

]
�e���

⊤

e
+ 𝜓t

2
�e . 

The GTI pattern is also different for each environment.
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